生成对抗网络入门指南(第2版)在线阅读
会员

生成对抗网络入门指南(第2版)

史丹青编著
开会员,本书免费读 >

计算机网络人工智能10万字

更新时间:2021-07-16 16:48:40 最新章节:参考文献

立即阅读
加书架
下载
听书

书籍简介

生成对抗网络毫无疑问是当今热门的人工智能技术之一,曾被美国《麻省理工科技评论》评选为“全球十大突破性技术”。《生成对抗网络入门指南》是一本结合基础理论与工程实践的入门型书籍,深入浅出地讲解了生成对抗网络的各类模型以及技术发展。本书面向机器学习从业人员、在校相关专业学生以及具备一定基础的人工智能领域爱好者。通过本书的学习,能够了解生成对抗网络的技术原理,并通过书中的代码实例深入技术细节。本书共分12个章节,其中前半部分分别介绍了目前研究领域已经较为成熟的生成对抗网络模型,比如DCGAN、WGAN等等,以及大量不同结构的生成对抗网络变种。本书后半部分介绍了文本到图像的生成、图像到图像的生成、离散数据的生成以及当前前沿的高质量生成技术,结尾总结了目前生成对抗网络在行业应用中的研究与发展。希望本书能够帮助广大读者跟上新技术的前沿,成为人工智能时代的先行者。
品牌:机械工业出版社
上架时间:2021-06-01 00:00:00
出版社:机械工业出版社
本书数字版权由机械工业出版社提供,并由其授权上海阅文信息技术有限公司制作发行

最新章节

史丹青编著
主页

同类热门书

最新上架

  • 会员
    全书通过118个实用技巧讲解+118集教学视频演示+160多个素材回复文件+144页PPT教学课件,通过“提问生成+修改润色+热门模板+应用案例”4大专项内容,帮助小白快速成为AI文案高手!本书具体内容包括16种AI提问技巧、13种指令优化技巧、11种高效提问技巧、9种文案修改技巧、7种文案润色方法、11类营销文案指令模板、12类办公文案指令模板、13类自媒体文案指令模板、12类教育学术文案指令模
    AIGC文画学院编著计算机11.6万字
  • 会员
    本书内容从技能线和工具线展开介绍。其中,技能线介绍了虚拟数字人的技术原理、商业价值、创建工具等基础内容,以及AI文案、AI绘画、虚拟数字人及其直播、AI视频博主、AI带货主播、AI培训讲师等实操案例。工具线介绍了ChatGPT、StableDiffusion、腾讯智影、剪映等工具的使用方法,并通过实例介绍了使用这些工具制作数字人的技巧。
    木白编著计算机7.1万字
  • 会员
    本书以第一人称视角,讲述AI的来龙去脉,表达AI的技术原理。从历史到未来,跨越百年时空;从理论到实践,解读AI大爆炸;从技术到哲学,穿越多个维度;从语言到绘画,落地实战演练。ChatGPT的诞生,引发了奇点降临,点亮了AGI(通用人工智能),并涉及大模型、深度神经网络、Transformer、AIGC、涌现效应等一系列技术前沿。
    量子学派@ChatGPT计算机8.6万字
  • 会员
    本书共有10章,包括51个实操案例解析和80个行业案例分析。书中内容从技能线和案例线展开介绍。技能线:从人工智能的相关技术入手,不仅介绍了AI训练师的发展历程和行业动态,还重点讲述了AI训练师的职业技能提升方法。案例线:不仅涵盖了AI领域的各个方面,而且非常注重算法与模型的实际应用,通过分析大量的经典案例,可以让读者更好地掌握AI训练的相关技能。
    谷建阳编著计算机11.6万字
  • 会员
    本书介绍了人工智能概览、机器学习、深度学习、人工智能主流开发框架、华为全栈全场景AI战略—EI、HiAI、昇腾,以及人工智能综合实验等内容?这是一本华为ICT学院人工智能课程培训的教材。本书是作者和华为的工作人员共同完成的,其间参阅了国内外现有教材和相关文献后编写的?全书注重理论与实践的结合,注重算法与框架的实际应用与实现方法,注重创新思维的训练与培养?本书既可作为高等院校人工智能课程的培训教材,
    华为技术有限公司编著计算机13.6万字
  • 会员
    本书配套周志华教授所著的《机器学习》教材,通过大量习题考查读者对机器学习相关知识点的理解与掌握。全书分为两个部分:第一部分习题对应《机器学习》第1~10章的内容,包括绪论、模型评估与选择、线性模型、决策树、神经网络、支持向量机、贝叶斯分类器、集成学习、聚类、降维与度量学习;第二部分包含6章应用专题,通过综合题的形式对知识点进行多角度考查,包括线性模型的优化与复用、面向类别不平衡数据的分类、神经网络
    叶翰嘉 詹德川计算机19.3万字
  • 会员
    本书分为4章,共20章。其中第1篇为基础算法篇,从第1章到第9章,讲述排序、查找、线性结构、树、散列、图、堆栈等基本数据结构算法;第2篇为机器学习算法篇,从第10章到第14章,讲述分类算法、回归算法、聚类算法、降维算法和集成学习算法;第3篇为强化学习算法篇,从第15章到第16章,讲述基于价值的强化学习算法和基于策略的强化学习算法;第4篇为深度学习算法篇,从第17章到第19章,讲述神经网络模型算法、
    唐宇迪 史卫亚 罗召勇 李琳 侯惠芳编著计算机0字
  • 会员
    本书共十一章,主要包含四部分:第1章解读ChatGPT的基础原理和提示工程的基本概念;第2至5章介绍提示工程技巧,涵盖有效提示编写、针对复杂任务的提示设计技巧、对话中的提示设计技巧,以及提示的优化与迭代;第6章主要介绍当前ChatGPT推出的进阶功能;第7至11章结合教育领域、市场营销、新媒体运营、软件开发和数据分析实战展示提示工程技巧的应用。
    夏禹计算机12.9万字
  • 会员
    本书从人工智能导论入手,阐述人工智能的发展及现状,重点介绍了机器学习和神经网络基础、反向传播原理、卷积神经网络和循环神经网络等内容。本书内容由浅入深,循序渐进,从神经元和感知机入手,逐步讲解深度学习中神经网络基础、反向传播以及更深层次的卷积神经网络、循环神经网络。本书知识体系完整,内容覆盖面广,介绍了深度学习中常用的模型和算法,助力读者多方位掌握深度学习的相关知识。本书可作为高等院校计算机等相关专
    肖睿 程鸣萱编著计算机11万字