MXNet深度学习实战在线阅读
会员

MXNet深度学习实战

魏凯峰
开会员,本书免费读 >

计算机网络人工智能13.6万字

更新时间:2019-06-21 18:23:30 最新章节:12.3 本章小结

立即阅读
加书架
下载
听书

书籍简介

本书是从一名算法工程师的角度出发介绍算法实现,整体上偏基础和细节,能够帮助入门者少走弯路。随着这几年深度学习的快速发展,众多深度学习框架对各类接口的封装都很完善,使用起来非常方便,但是部分深度学习入门者仅仅停留在跑通demo却不理解细节内容的层面,这也常常被人调侃有些浮躁,通过本书,笔者希望读者不仅能够灵活调用这些接口实现算法,而且能够理解这些接口的内在含义,不断夯实自己的算法基础。
品牌:机械工业出版社
上架时间:2019-05-01 00:00:00
出版社:机械工业出版社
本书数字版权由机械工业出版社提供,并由其授权上海阅文信息技术有限公司制作发行

最新章节

魏凯峰
主页

同类热门书

最新上架

  • 会员
    《Manus实用操作极简入门与指南》是一本为普通用户设计的AIAgent使用手册,旨在帮助读者快速掌握AIAgent的核心功能,提升工作效率。本书从AIAgent的基本概念入手,详细介绍了AIAgent的自主性、智能性和目标导向性,并通过丰富的实例展示了AIAgent在数据分析、自动化流程、决策支持等领域的强大能力。书中重点介绍了Manus这一新一代通用AIAgent,它不仅能理解用户
    苏江 温洁计算机8.9万字
  • 会员
    本书通过对10款人工智能应用的介绍及调试,帮助读者快速掌握人工智能辅助文案变现的方式。本书共10章,分别讲解AI智能创作,AI爆款文案写作工具,人工智能辅助泛流量文案、泛商业文案、私域文案创作,利用人工智能实现文案变现的底层逻辑,以及在今日头条、百家号、小红书、知乎等平台及不同展示形式下进行文案创作的实战案例等。
    刘丙润计算机12.2万字
  • 会员
    本书是继《EasyRL:强化学习教程》(俗称“蘑菇书”)之后,为强化学习的读者专门打造的一本深入实践的全新教程。全书大部分内容基于3位作者的实践经验,涵盖马尔可夫决策过程、动态规划、免模型预测、免模型控制、深度学习基础、DQN算法、DQN算法进阶、策略梯度、Actor-Critic算法、DDPG与TD3算法、PPO算法等内容,旨在帮助读者快速入门强化学习的代码实践,并辅以一套开源代码框架“Joy
    江季 王琦 杨毅远计算机7.8万字
  • 会员
    本书聚焦通用人工智能的学科内涵与发展趋势,以一套基于“能力与价值双系统”的通用人工智能认知架构与测试模式为核心,梳理形成“一个定义、两个完备性、三个特征、八个关键问题”的理论框架。本书共6章,从人工智能的历史、内涵与哲学基础切入,依次介绍通用人工智能的定义与特征、测试与评级、训练与测试平台,以及TongAI理论框架,最后给出对发展通用人工智能的建议。本书既有助于科技领域的管理者和投资者提纲挈领,把
    朱松纯主编计算机16.4万字
  • 我们当下正在经历一场AI革命。现在有创纪录的310万个机器人在工厂工作,从事从组装电脑到包装货物以及监测空气质量等各种工作。数量庞大的智能机器以各种各样的方式影响着我们的生活,如提高外科医生的手术精确度,清洁我们的家等等,我们正处于机器智能带来的令人兴奋的可能性当中。下一个万亿规模的企业,也许正在AI机器人领域诞生。当下的机器人产业,远远超出常人的想象。你会看到全世界最先锋的机器人研究团队如何开发
    (美)丹妮拉·鲁斯 (美)格雷戈里·莫内计算机13.5万字
  • 会员
    本书从写作与ChatGPT的基础知识讲起,结合创作者的实际写作经历与写作教学经历,介绍了用ChatGPT写作的基础技巧、进阶写作的方法、不同文体的写作方法、写作变现的秘诀,让读者理解写作技巧与变现思路。
    无戒 杜培培 俞庚言计算机14.7万字
  • 会员
    (1)AI与AIGC基础知识:从基础入手,深入讲解AI技术的基本概念和原理。通过通俗易懂的讲解和示例,帮助读者建立坚实的理论基础,为后续章节的深入学习打下良好基础。(2)智能设备上的AIGC系统设计:详细介绍AIGC技术在实际应用过程中的各种功能设计和实现方法。内容涵盖算法选择、模型训练、系统集成等各个环节,通过丰富的技术细节和设计策略,帮助读者全面掌握AIGC技术的应用要点。(3)AIGC关键工
    刘冰计算机18万字
  • 会员
    本书共八章,从高校资源配置的教育、科研、社会、经济规律视角,以建设卓越世界一流大学为导向,对高校科学仪器设备配置中的问题进行研究。
    王士国 翟宇 虞振飞 方良华计算机17.5万字
  • 会员
    本书分为3个部分:第1章和第2章是人工智能的数学基础,主要介绍了机器学习的概念、Python开发环境的搭建、机器学习bibei的数学知识,以及线性代数和概率论的相关知识;第3~12章主要介绍了回归模型、分类模型、聚类模型、半监督模型的建立和相关算法的理论,以及如何使用sklearn具体实现相关算法模型的搭建;第13章介绍了Spark机器学习,笔者认为对于机器学习,不能只限于Python中的skle
    刘润森计算机0字